

Department of Computer Science and Engineering Lesson Plan: Course Title: Computer Graphics & Image Processing Course Code: CSE 455

Credits: 3

Course Type: Core CIE Marks: 60 Class Hours/Week: 3

Pre-requisite: SP SEE Marks: 40

Session: FALL 2024

Instructor : Salman Farsi, Lecturer, DCSE, PU Class schedule: Section C: Monday(8:30am -9:45am) Wednesday(8.30am-9:45am) Section B: Sunday (2.30pm-3.45pm) Monday(12.15pm-1.30pm)

Email address: salman.cuet.cse@gmail.com

Phone No: 01521557866

Course Rationale:

Computer graphics concentrates on the fundamentals of computer graphics and addresses the knowledge and skill in computer graphics development which are essential for computing professionals. Image processing, on the other hand emphasizes on general principles of image processing and its application.

Course Objectives:

The objectives of this course are:

- 1. To develop a theoretical foundation of fundamental computer Graphics & Digital Image Processing concepts.
- 2. To learn basic algorithms for computer graphics and image processing.
- 3. To understand and imply various filters, Point processing, and Arithmetic operations in image processing.
- 4. To understand different applications of graphics and image processing.

Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

CO1	Explain (C2) the fundamental concepts of computer graphics and image processing.					
CO2	Demonstrate (C3) the scan conversion algorithms for drawing various types of					
	geometric shapes.					
CO3	Illustrate (C3) the ideas of 2D and 3D transformation and clipping techniques.					
CO4	Use (C3) different types of image processing techniques for transformation, filtering,					
	smoothing and enhancement.					
CO5	Solve (C3) different image compression algorithms, segmentation and feature					
	extraction techniques.					

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V											
CO2	٧	٧										
CO3	V	V										
CO4	V	V										
CO5	V	V										

Course Description:

SL No.	Course Contents	COs
1.	Fundamental Concepts: Image representation, color model, pixel, rasterization,	CO1
	quantization, mathematical tools.	
2.	Scan conversion: Scan conversion algorithms for point, line, circle, ellipse, rectangle, Region filling, scan converting character, anti-aliasing	CO2
3.	2D and 3D Transformation, viewing, clipping: Geometric transformation, translation, rotation, scaling, mirror reflection, co-ordinate transformation, composite transformation, instance transformation, viewport mapping, shape	CO3
4.	Image processing: Fundamental concepts, color model conversion, smoothing, filtering, sharpening, fourier transformation, image enhancement, image	CO1, CO4
5.	Compression and segmentation: Huffman coding, Arithmetic coding, LZW coding, Bit-plane coding, Wavelet coding, watermarking, thresholding,	CO5

Text Books, Reference Books and Other Resources:

- 1. Computer Graphics: Zhigang Xiang and Roy Plastock
- 2. Digital Image Processing: Rafael C. Gonzalez, Richard E. Woods
- 3. Computer Graphics: Principles and Practice: James D Foley, Andries Van Dan

Mapping Course Outcomes with the Teaching-Learning and Assessment Strategy:

COs	Corresponding	Bloom's	Delivery	Assessment Tools
	POs	Taxonomy	Methods	
		Domain/Level	and Activities	
		(C: Cognitive, P:		
		Psychomotor A:		
		Affective)		
CO1	PO1	C2	Lecture, Slide	Class Test, Assignment,
				Midterm, Final
CO2	PO1, PO2	C3	Lecture, Slide	Class Test, Assignment,
				Midterm, Final
CO3	PO1, PO2	C3	Lecture, Slide	Class Test, Assignment,
				Midterm, Final
CO4	PO1, PO2	C3	Lecture, Slide	Class Test, Assignment,
				Midterm, Final
CO5	PO1, PO2	C3	Lecture, Slide	Class Test, Assignment,
				Midterm, Final

Marks distribution

Description	Marks
Class Attendance/ Participation	10
Class Test	20
Assignments	10
Midterm	20
Final Exam	40

Lecture schedule:

Class	Date	Торіс	Teaching Strategy	со	Assessment Strategy
1		Computer Graphics: Introduction, Raster and Vector Graphics	Lecture notes, Slides, slides, problem solve	CO1	Midterm, Final
2		The RGB and CMY color model, Direct Coding, Lookup Table	Lecture notes, Slides, problem solve	CO1	Midterm, Final
3		Scan-Converting a Point, Scan-Converting a Line	Lecture notes, Slides, problem solve	CO2	Class Test 1, Midterm, Final
4		Scan-Converting a Circle, Scan-Converting a Rectangle	Lecture notes, Slides, problem solve	CO2	Class Test 1, Midterm, Final
5		Scan-converting a character, Region Filling, Anti-Aliasing	Lecture notes, Slides, problem solve	CO2	Class Test 1, Midterm, Final
6		Class Test – 1		CO2	
7		Geometric Transformations, Coordinate Transformations, Composite Transformations, Instance Transformations	Lecture notes, Slides, problem solve	CO3	Midterm, Final
8		Window-to-Viewport Mapping, Point Clipping, Line Clipping, Polygon Clipping	Lecture notes, Slides, problem solve	CO3	Midterm, Final
9		Result publication of CT-1 ; Polygon Meshes, Parametric Cubic Curves,	Lecture notes, Slides, problem solve	CO3	Midterm, Final
10		Hermit Curves, Bezier Curves	Lecture notes, Slides, problem solve	CO3	Midterm, Final
11		Image Processing: Fundamental Steps in DIP	Lecture notes, Slides, problem solve	CO4	CT-2, Final
12		Components of an Image Processing System, Image model,	Lecture notes, Slides, problem solve	CO4	Class Test 2, Midterm, Final

		Lecture notes,		Class Test 2,
13	Image Sampling and Quantization,	Slides,	CO1	Midterm,
		problem solve		Final
14	Midterm		CO1,	
			CO3	
	Relationships between pixels. Some Basic	Lecture notes,		
15	Intensity Transformation Function	Slides,	CO1	Final
	,	problem solve		
	Result publication of Midterm; Image	Lecture notes,		
16	Smoothing using Frequency Domain Filters	Slides,	CO4	Final
		problem solve		
17	Discrete Fourier Transform, Discrete Cosine	Lecture notes,	CO 4	Assignment,
1/	Transform,	problem solve	004	Final
		problem solve		
18	Class Test - 2		CO4	
		Lecture notes,		
19	Haar Transform, Hadamard Transform	Slides,	CO4	Final
		problem solve		
	Define gray and binary image, Fundamental	Lecture notes,	CO1,	I
20	of binary image analysis	Slides,	CO4	Final
21	Result publication of CT-2; Convert a gray	Slides	CO4	Final
	scale image to a binary image: Thresholding	problem solve		
	Image Sharpening using Frequency Domain	P		
	Filters	Lecture notes,	CO4	Assignment,
22	Filtering image: Gaussian filter, Gabor filter	Slides,		Final
		problem solve		
		Lecture notes,		
23	Assigning Complex engineering problem;	Slides,	CO5	Class Test 3,
	Image Compression: Huffman Coding	problem solve		FINd
		Lecture notes,		Class Test 3
24	Image Compression: Arithmetic Coding	Slides,	CO5	Final
		problem solve		
25		Lecture notes,		Class Test 3.
	LZW Coding, Bit plane slicing	Slides,	CO5	Final
		problem solve		
26	Class Test – 3 + Review and Problem solving		CO5	