

Course Title: Neural Network & Fuzzy Logic Level/Term: 4/1 Credit: 3 Prerequisite: Session: Fall 2024 Course Code: CSE 451 Section: 7E Contact Hours: 39 Type: Core/Major: Core

Instructor: Salman Farsi, Lecturer, Department of CSE, Premier University Class schedule:

Saturday (9.45 am-11.00 am) & Wednesday (11.00 am -12:15 pm)

Room No: 907 Email address: <u>salman.cuet.cse@gmail.com</u>

Room No: 907 **Phone No:** 01521557866

Course Objective:

The objectives of this course are:

- 1. Facilitating necessary knowledge about the design and working principle of Artificial Neural Networks (ANN) and Deep Learning (DL).
- 2. Teaching the students how the mathematics behind Neural Networks (NN) Learning actually works, rather than presenting only a cursory or surface-level description.
- 3. Helping the students conceptualize and understand the key parameters in a neural network's architecture and apply them to their own applications.
- 4. Gaining the basics of different application areas and evaluation of fuzzy logic and fuzzy set theories.

Course Outcomes:

Upon successfully completing this course, students will be able to:

CO1	Explain(C2) the design principles and operational mechanisms of Artificial Neural Networks (ANN)
CO2	Illustrate(C3) the application of principles and mathematics in training a simple neural network—including loss/cost functions, gradient descent, and computation graphs
CO3	Explain(C2) the foundational concepts of fuzzy logic and fuzzy set theories, including key concepts of fuzzy systems such as fuzzy numbers, fuzzy relations, and their composition.
CO4	Implement (C3) fuzzy systems with fuzzy rules to represent uncertain knowledge and apply theoretical frameworks for solving practical problems.

	PO1	РО	PO3	PO4	РО	PO6	РО	PO8	PO9	PO1	PO11	PO12
		2			5		7			0		
CO1	\checkmark											
CO2		N										
CO3		N										
CO4												

Mapping of Course Outcomes to Program Outcomes-

Text Books, Reference Books and Other Resources:

- 1. <u>Dive into Deep Learning</u> By Amazon Research Scientists.
- 2. "Make Your Own Neural Network" By Tariq Rashid
- 3. "Fundamentals of Deep Learning", O'Reilly By Nikhil Buduma.
- 4. "Deep learning" By Ian Goodfellow and Yoshua Bengio and Aaron Courville.
- 5. <u>Neural Networks and Deep Learning</u> By <u>Michael Nielsen</u>.
- 6. "Fuzzy and Neural Approach in Engineering" Lefteri H. Tsoukalas, Robert E. Uhrig.

Teaching Strategy: Typical methodologies are Class lectures, web access, self-study, problem formulation, problem solution, Video, Web Link, and student presentation.,

Assessment Strategy: class attendance (10%), assignments/homework (10%), Class tests (20%), midterm exam (20%), and final exam (40%).

No	Торіс	Teaching Strategy	СО	Assessment Strategy
01	A Gentle Introduction to NN: Differences among AI/ML/DL, Subcategories of ML and their working principle, Biological Vs. Artificial NN	Slides/Books /Notes	CO1	Midterm,
03	Applications of Neural Network: An abstract example of NN, Supervised Learning with NN, Popular NN Architectures (ANN, CNN, RNN, Transformers), Reason behind Deep Learning's success	Slides/Books /Notes	CO1	Midterm,
04	Structural Building Blocks of NN: Input/Output Layers, Weights and Bias, (non-linearity), Forward Propagation, Concepts of Hidden Layer,	Slides/Books /Notes	CO1	Class Test 01, Midterm,

Weekly Lecture Schedule:

05	Single Layer Perceptron (A Simple NN): Linear Regression, From Linear to Logistic Regression Training set, Input/Output	Slides/Books /Notes	CO1	Midterm,				
06	Multi-Layer NN: AND, OR, XOR gate Using NN.	Slides/Books /Notes	CO1	Mid-Term				
07	Activation Function: Linear and Non-Linear Activation Function	Slides/Books /Notes	CO1	Class Test- 02, Midterm				
08	Multi-Layer NN: Vectorized Representation of Multi-Layer NN, Adding Bias as a weight.	Slides/Books /Notes	CO1	Midterm,				
09	How NN's Learns: Weight Initialization (Random vs. Zero), Expected Vs Predicted Output, Loss and Cost Function, Back-propagation Basics.	Slides/Books /Notes	CO1,	Mid-Term, Final				
10	Loss and Cost Function: Training/Dev/Test set, Loss function: M.S.E, Convex Vs. Non- convex, Local Vs. Global Optima.	Slides/Books /Notes	CO1 ,CO2	Midterm, Final				
11	Loss and Cost Function : Log/Cross-Entropy Loss., L1 and L2 M.A.E, Cost Function,	Slides/Books /Notes	CO1, CO2	Midterm, Final				
12	Gradient Descent (G.D): Finding the Global Optima, Derivatives, Weights and Bias Update, Learning Rate, and Computation Graph.	Slides/Books /Notes	CO1, CO2	Assignment Midterm Final Exam				
13	Midterm Exam							
14	Backward Propagation: Back-prop using Computation Graph, G.D with Backpropagation for LR, G.D with 'M' training examples	Slides/Books /Notes	CO1, CO2	Assignment, Final				
15	Backward Propagation : G.D Algorithm using Summation, Vectorized G.D, Updating Weights and Bias, Iteration Vs. Batch Vs. Epochs.	Slides/Books /Notes	CO1, CO2	Final				
16	Introduction to Fuzzy Logic: Fuzzy Set, Fuzzy Set Operations - Union, Intersection, Complement,	Slides/Books /Notes	CO3	Final				
18	Introduction to Fuzzy Logic: Properties of Fuzzy Set, Extension Principles, Alfa-cuts.	Slides/Books /Notes	CO3	Final				
19	Fuzzy Relations: Properties, Basic Operations, Compositions of Fuzzy Relations	Slides/Books /Notes	CO3	Final Exam				

20	Fuzzy Relations: Properties, Basic Operations, Compositions of Fuzzy Relations	Slides/Books /Notes	CO3	Class Test-3, Final Exam
21	Fuzzy Number: Representation, Properties, Addition, Subtraction of Discrete and Continuous Fuzzy Number,	Slides/Books /Notes	CO3, CO4	Final Exam
22	Fuzzy Number: Addition and Subtraction of Discrete Fuzzy Number through Extension Principle	Slides/Books /Notes	CO3, CO4	Final
23	Fuzzy Number: Multiplication and Division of Fuzzy Number.	Slides/Books /Notes	CO3, CO4	Final
24	Fuzzy Linguistic Description: Linguistic Variables and Values, Implication Relations, Fuzzy Inference, and Composition.	Slides/Books /Notes	CO3, CO4	Final Exam
25	FuzzyLinguisticDescription:LinguisticVariablesandValues,ImplicationRelations,FuzzyInference,andComposition.	Slides/Books /Notes	CO3, CO4	Final Exam
26	Review			