Hand Notes
Credit goes to © Omar Sharif for everything in this page. These are handmade notes of him on the popular Deep Learning Specialization on Coursera.
- Neural Networks and Deep Learning Note.
- Improving Deep Neural Networks Note.
- Structuring Machine Learning Projects Note.
- Convolutional Neural Networks Note.
- Sequence Models Note.
NLP Resources
List of few books, courses and blog posts that is really helpful.
- Collected Advices
- Collection of Advices [link]
- Advice for Researchers and Students [link]
- Career advice by [Andrew Ng]
- Advice for Research Students [Jason Eisner]
- Important Books
- Key Courses
- CMU Advanced NLP course [Advanced NLP]
- Deep Learning Specialization (all courses) [link]
- NTU NLP course [Deep NLP]
- TensorFlow Specialization [DeepLearning.AI]
- Natural Language Processing with Deep Learning [CS224n]
- Guidelines to Follow
- ACL Year-Round Mentorship [Link]
- Awesome illustrations of [Jay Alammar].
- Colah’s Blog [Link].
- Machine Learning Mystery [Jason Brownlee]
Must Read NLP Papers
A subset of papers that are useful in clarifying my understanding of various NLP topics.
* A Neural Probabilistic Language Model * [Word2Vec]/[Negative Sampling]/[GloVe] * Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation * Sequence to Sequence Learning with Neural Networks * Neural Machine Translation by Jointly Learning to Align and Translate (Paper that introduces Attention) * Effective Approaches to Attention-based Neural Machine Translation * Attention Is All You Need * [ELMo]/[BERT]/[RoBERTa] * [ELECTRA]/[ALBERT]/[XLNet] * [GPT]/[GPT-2]/[GPT-3] * T5 (an awesome paper)
Few Useful Links
Few blog posts/links that are found really useful to understand various fundamental concepts of NLP.
* Andrej Karpathy's coding-based backpropagation post [Link] * Andrej Karpathy's blog on RNNs [Link] * Understanding LSTM Networks [Link] * The Illustrated Word2vec [Link] * Mechanics of Seq2seq Models With Attention [Link] * The Illustrated Transformer [Link] * The Annotated Transformer [Link] * Visualizing Transformer Language Models [Link] * The State of Transfer Learning in NLP [Link] * The Illustrated BERT, ELMo, and co. [Link] * A Visual Guide to Using BERT [Link] * Various BERT Pre-Training Methods [Link]